API
Checkerboard Matrix Type
Checkerboard.CheckerboardMatrix
— TypeCheckerboardMatrix{T<:Union{AbstractFloat, Complex{<:AbstractFloat}}}
A type to represent a checkerboard decomposition matrix.
Fields
transposed::Bool
: If the checkerboard matrix is transposed.inverted::Bool
: If the checkerboard matrix is inverted.Nsites::Int
: Number of sites/orbitals in lattice.Nneighbors::Int
: Number of neighbors.Ncolors::Int
: Number of checkerboard colors/groups.neighbor_table::Matrix{Int}
: Neighbor table represented by a(2,Nneighbors)
dimension matrix, where each column contains a pair of neighboring sites.coshΔτt::Vector{T}
: The $\cosh(\Delta\tau t)$ values.sinhΔτt::Vector{T}
: The $\sinh(\Delta\tau t)$ values.perm::Vector{Int}
: The checkerboard permutation order relative to the ordering of the original neighbor table.inv_perm::Vector{Int}
: Inverse permuation ofperm
.colors::Matrix{Int}
: The bounds of each checkerboard color/group inneighbor_table
.
Checkerboard.CheckerboardMatrix
— MethodCheckerboardMatrix(neighbor_table::Matrix{Int}, t::AbstractVector{T}, Δτ::E;
transposed::Bool=false, inverted::Bool=false) where {T<:Continuous, E<:AbstractFloat}
Given a neighbor_table
along with the corresponding hopping amplitudes t
and discretzation in imaginary time Δτ
, construct an instance of the type CheckerboardMatrix
.
Checkerboard.CheckerboardMatrix
— MethodCheckerboardMatrix(Γ::CheckerboardMatrix;
transposed::Bool=false, inverted::Bool=false, new_matrix::Bool=false)
Construct a new instance of CheckerboardMatrix
based on a current instance Γ
of CheckerboardMatrix
. If new_matrix=true
then allocate new coshΔτt
and sinhΔτt
arrays.
Checkerboard.checkerboard_matrices
— Functioncheckerboard_matrices(neighbor_table::Matrix{Int}, t::AbstractMatrix{T}, Δτ::E;
transposed::Bool=false, inverted::Bool=false)
Return a vector of CheckerboardMatrix
, one for each column of t
, all sharing the same neighbor_table
.
Checkerboard.update!
— Functionupdate!(Γ::CheckerboardMatrix{T}, t::AbstractVector{T}, Δτ::E) where {T<:Continuous, E<:AbstractFloat}
Update the CheckerboardMatrix
based on new hopping parameters t
and discretezation in imaginary time Δτ
.
update!(Γs::AbstractVector{CheckerboardMatrix{T}}, t::AbstractMatrix{T}, Δτ::E) where {T<:Continuous, E<:AbstractFloat}
Update a vector of CheckerboardMatrix
based on new hopping parameters t
and discretezation in imaginary time Δτ
.
update!(coshΔτt::AbstractVector{T}, sinhΔτt::AbstractVector{T}, t::AbstractVector{T}, Δτ::E) where {T<:Continuous, E<:AbstractFloat}
Update the coshΔτt
and sinhΔτt
associated with a checkerboard decomposition based on new hopping parameters t
and discretezation in imaginary time Δτ
.
Overloaded Functions
Base.eltype
— Functioneltype(Γ::CheckerboardMatrix{T}) where {T}
Return the matrix element type T
of checkerboard decomposition Γ
.
Base.size
— Functionsize(Γ::CheckerboardMatrix)
size(Γ::CheckerboardMatrix, dim::Int)
Return the dimensions of the checkerboard decomposition matrix Γ
.
Base.transpose
— Functiontranspose(Γ::CheckerboardMatrix)
Return a transposed/adjoint version of the checkerboard matrix Γ
.
Base.adjoint
— Functionadjoint(Γ::CheckerboardMatrix)
Return a transposed/adjoint version of the checkerboard matrix Γ
.
Base.inv
— Functioninv(Γ::CheckerboardMatrix)
Return the inverse of the checkerboard matrix Γ
.
LinearAlgebra.mul!
— Functionmul!(u::AbstractVecOrMat, Γ::CheckerboardMatrix, v::AbstractVecOrMat)
Evaluate the matrix-vector or matrix-matrix product u=Γ⋅v
.
mul!(u::AbstractVecOrMat, Γ::CheckerboardMatrix, v::AbstractVecOrMat, color::Int)
Evaluate the matrix-vector or matrix-matrix product u=Γ[c]⋅v
where Γ[c]
is the matrix associated with the color
checkerboard color matrix.
mul!(u::AbstractVecOrMat, v::AbstractVecOrMat, Γ::CheckerboardMatrix)
Evaluate the matrix-vector or matrix-matrix product u=v⋅Γ
.
mul!(u::AbstractVecOrMat, v::AbstractVecOrMat, Γ::CheckerboardMatrix, color::Int)
Evaluate the matrix-vector or matrix-matrix product u=v⋅Γ[c]
where Γ[c]
is the matrix associated with the color
checkerboard color matrix.
LinearAlgebra.lmul!
— Functionlmul!(Γ::CheckerboardMatrix, u::AbstractVecOrMat)
Evaluate in-place the matrix-vector or matrix-matrix product u=Γ⋅u
, where u
gets over-written.
lmul!(Γ::CheckerboardMatrix, u::AbstractVecOrMat, color::Int)
Evaluate in-place the matrix-vector or matrix-matrix product u=Γ[c]⋅u
, where Γ[c]
is the matrix associated with the color
checkerboard color matrix.
LinearAlgebra.rmul!
— Functionrmul!(u::AbstractVecOrMat, Γ::CheckerboardMatrix)
Evaluate in-place the matrix-vector or matrix-matrix product u=u⋅Γ
, where u
gets over-written.
rmul!(u::AbstractVecOrMat, Γ::CheckerboardMatrix, color::Int)
Evaluate in-place the matrix-vector or matrix-matrix product u=u⋅Γ[c]
, where Γ[c]
is the matrix associated with the color
checkerboard color matrix.
LinearAlgebra.ldiv!
— Functionldiv!(Γ::CheckerboardMatrix, v::AbstractVecOrMat)
Evaluate in-place the matrix-vector or matrix-matrix product v=Γ⁻¹⋅v
.
ldiv!(u::AbstractVecOrMat, Γ::CheckerboardMatrix, v::AbstractVecOrMat)
Evaluate the matrix-vector or matrix-matrix product u=Γ⁻¹⋅v
.
ldiv!(Γ::CheckerboardMatrix, v::AbstractVecOrMat, color::Int)
Evaluate in-place the matrix-vector or matrix-matrix product v=Γ⁻¹[c]⋅v
where Γ⁻¹[c]
is the inverse of the matrix associated with the color
checkerboard color matrix.
ldiv!(u::AbstractVecOrMat, Γ::CheckerboardMatrix, v::AbstractVecOrMat, color::Int)
Evaluate the matrix-vector or matrix-matrix product u=Γ⁻¹[c]⋅v
where Γ⁻¹[c]
is the inverse of the matrix associated with the color
checkerboard color matrix.
LinearAlgebra.rdiv!
— Functionrdiv!(u::AbstractVecOrMat, Γ::CheckerboardMatrix)
Evaluate in-place the matrix-vector or matrix-matrix product u=u⋅Γ⁻¹
, where u
gets over-written.
rdiv!(u::AbstractVecOrMat, v::AbstractVecOrMat, Γ::CheckerboardMatrix)
Evaluate the matrix-vector or matrix-matrix product u=v⋅Γ⁻¹
, where u
gets over-written.
rdiv!(u::AbstractVecOrMat, Γ::CheckerboardMatrix, color::Int)
Evaluate in-place the matrix-vector or matrix-matrix product u=u⋅Γ⁻¹[c]
, where Γ[c]
is the matrix associated with the color
checkerboard color matrix.
rdiv!(u::AbstractVecOrMat, v::AbstractVecOrMat, Γ::CheckerboardMatrix, color::Int)
Evaluate the matrix-vector or matrix-matrix product u=v⋅Γ⁻¹[c]
, where Γ[c]
is the matrix associated with the color
checkerboard color matrix.
Developer API
Checkerboard.Continuous
Checkerboard.AbstractVecOrMat
checkerboard_decomposition!
checkerboard_lmul!
checkerboard_rmul!
checkerboard_color_lmul!
checkerboard_color_rmul!
Checkerboard.AbstractVecOrMat
— TypeAbstractVecOrMat{T} = Union{AbstractVector{T}, AbstractMatrix{T}}
Abstract type defining union of AbstractVector
and AbstractMatrix
.
Checkerboard.Continuous
— TypeContinuous = Union{AbstractFloat, Complex{<:AbstractFloat}}
Abstract type to represent continuous real or complex numbers.
Checkerboard.checkerboard_decomposition!
— Functioncheckerboard_decomposition!(neighbor_table::Matrix{Int})
Given a neighbor_table
, construct the checkerboard decomposition, which results in the columns of neighbor_table
being re-ordered in-place. Two additional arrays are also returned:
perm::Vector{Int}
: The permutation used to re-order the columns ofneighbor_table
according to the checkerboard decomposition.colors::Matrix{Int}
: Marks the column indice boundaries for each checkerboard color inneighbor_table
.
Checkerboard.checkerboard_lmul!
— Functioncheckerboard_lmul!(B::AbstractMatrix{T}, neighbor_table::Matrix{Int},
coshΔτt::AbstractVector{T}, sinhΔτt::AbstractVector{T}, colors::Matrix{Int};
transposed::Bool=false, inverted::Bool=false) where {T<:Continuous, E<:Continuous}
Evaluate the matrix-matrix product in-place B=Γ⋅B
where Γ
is the checkerboard matrix.
checkerboard_lmul!(v::AbstractVector{T}, neighbor_table::Matrix{Int},
coshΔτt::AbstractVector{E}, sinhΔτt::AbstractVector{E}, colors::Matrix{Int};
transposed::Bool=false, inverted::Bool=false) where {T<:Continuous, E<:Continuous}
Multiply in-place the vector v
by the checkerboard matrix.
Checkerboard.checkerboard_rmul!
— Functioncheckerboard_rmul!(B::AbstractMatrix{T}, neighbor_table::Matrix{Int},
coshΔτt::AbstractVector{E}, sinhΔτt::AbstractVector{E}, colors::Matrix{Int};
transposed::Bool=false, inverted::Bool=false) where {T<:Continuous, E<:Continuous}
Evaluate the matrix-matrix product in-place B=B⋅Γ
where Γ
is the checkerboard matrix.
Checkerboard.checkerboard_color_lmul!
— Functioncheckerboard_color_lmul!(B::AbstractMatrix{T}, color::Int, neighbor_table::Matrix{Int},
coshΔτt::AbstractVector{T}, sinhΔτt::AbstractVector{T}, colors::Matrix{Int};
inverted::Bool=false) where {T<:Continuous, E<:Continuous}
Evaluate the matrix-matrix product in-place B=Γ[c]⋅B
where Γ[c]
is the color
checkerboard color matrix.
checkerboard_color_lmul!(v::AbstractVector{T}, color::Int, neighbor_table::Matrix{Int},
coshΔτt::AbstractVector{E}, sinhΔτt::AbstractVector{E}, colors::Matrix{Int};
transposed::Bool=false, inverted::Bool=false) where {T<:Continuous, E<:Continuous}
Multiply in-place the vector v
by the color
checkerboard color matrix.
Checkerboard.checkerboard_color_rmul!
— Functioncheckerboard_color_rmul!(B::AbstractMatrix{T}, color::Int, neighbor_table::Matrix{Int},
coshΔτt::AbstractVector{E}, sinhΔτt::AbstractVector{E}, colors::Matrix{Int};
inverted::Bool=false) where {T<:Continuous, E<:Continuous}
Evaluate the matrix-matrix product in-place B=B⋅Γ[c]
where Γ[c]
is the color
checkerboard color matrix.