API
Correlation Measurements
greens!
density_correlation!
spin_x_correlation!
spin_z_correlation!
pair_correlation!
bond_correlation!
current_correlation!
JDQMCMeasurements.greens!
— Functiongreens!(
G::AbstractArray{C,D},
a::Int, b::Int, unit_cell::UnitCell{D}, lattice::Lattice{D},
G_τ0::AbstractMatrix{T},
sgn=one(C)
) where {D, C<:Number, T<:Number}
Measure the unequal time Green's function averaged over translation symmetry
\[G_{\sigma,\mathbf{r}}^{a,b}(\tau)=\frac{1}{N}\sum_{\mathbf{i}}G_{\sigma,\mathbf{i}+\mathbf{r},\mathbf{i}}^{a,b}(\tau,0) =\frac{1}{N}\sum_{\mathbf{i}}\langle\hat{\mathcal{T}}\hat{a}_{\sigma,\mathbf{i}+\mathbf{r}}^{\phantom{\dagger}}(\tau)\hat{b}_{\sigma,\mathbf{i}}^{\dagger}(0)\rangle,\]
with the result being added to G
.
Fields
G::AbstractArray{C,D}
: Array the green's function $G_{\sigma,\mathbf{r}}^{a,b}(\tau)$ is written to.a::Int
: Index specifying an orbital species in the unit cell.b::Int
: Index specifying an orbital species in the unit cell.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.G_τ0::AbstractMatrix{T}
: The matrix $G(\tau,0).$sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
JDQMCMeasurements.density_correlation!
— Functiondensity_correlation!(
DD::AbstractArray{C,D},
a::Int, b::Int, unit_cell::UnitCell{D}, lattice::Lattice{D},
Gup_τ0::AbstractMatrix{T}, Gup_0τ::AbstractMatrix{T},
Gup_ττ::AbstractMatrix{T}, Gup_00::AbstractMatrix{T},
Gdn_τ0::AbstractMatrix{T}, Gdn_0τ::AbstractMatrix{T},
Gdn_ττ::AbstractMatrix{T}, Gdn_00::AbstractMatrix{T},
sgn=one(C)
) where {D, C<:Number, T<:Number}
Calculate the unequal-time density-density (charge) correlation function
\[\begin{align*} \mathcal{D}_{\mathbf{r}}^{a,b}(\tau) & = \frac{1}{N}\sum_{\mathbf{i}} \mathcal{D}_{\mathbf{i}+\mathbf{r},\mathbf{i}}^{a,b}(\tau,0)\\ & = \frac{1}{N}\sum_{\mathbf{i}} \langle \hat{n}_{a,\mathbf{i} + \mathbf{r}}(\tau)\hat{n}_{b,\mathbf{i}}(0) \rangle, \end{align*}\]
where $\hat{n}_{b,\mathbf{i}} = (\hat{n}_{\uparrow, b, \mathbf{i}} + \hat{n}_{\downarrow, b, \mathbf{i}})$ and $\hat{n}_{\sigma, b,\mathbf{i}} = \hat{b}^\dagger_{\sigma, \mathbf{i}} \hat{b}_{\sigma, \mathbf{i}}$ is the number operator for an electron with spin $\sigma$ on orbital $b$ in unit cell $\mathbf{i}$, with the result being added to the array DD
.
Fields
DD::AbstractArray{C,D}
: Array the density correlation function $\mathcal{D}_{\mathbf{r}}^{a,b}(\tau)$ is added to.a::Int
: Index specifying an orbital species in the unit cell.b::Int
: Index specifying an orbital species in the unit cell.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.Gup_τ0::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,0).$Gup_0τ::AbstractMatrix{T}
: The matrix $G_{\uparrow}(0,\tau).$Gup_ττ::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,\tau).$Gup_00::AbstractMatrix{T}
: The matrix $G_{\uparrow}(0,0).$Gdn_τ0::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,0).$Gdn_0τ::AbstractMatrix{T}
: The matrix $G_{\downarrow}(0,\tau).$Gdn_ττ::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,\tau).$Gdn_00::AbstractMatrix{T}
: The matrix $G_{\downarrow}(0,0).$sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
density_correlation!(
DD::AbstractArray{C,D},
a::Int, b::Int, unit_cell::UnitCell{D}, lattice::Lattice{D},
Gσ_τ0::AbstractMatrix{T}, Gσ_0τ::AbstractMatrix{T},
Gσ_ττ::AbstractMatrix{T}, Gσ′_00::AbstractMatrix{T},
σ::Int, σ′::Int, sgn=one(C)
) where {D, C<:Number, T<:Number}
Calculate the spin-resolved unequal-time density correlation function
\[\begin{align*} \mathcal{D}_{\mathbf{r}}^{(a,\sigma),(b,\sigma')}(\tau) = \frac{1}{N}\sum_{\mathbf{i}} & \mathcal{D}_{\mathbf{i}+\mathbf{r},\mathbf{i}}^{(a,\sigma),(b,\sigma')}(\tau,0) \\ = \frac{1}{N}\sum_{\mathbf{i}} & \langle\hat{n}_{\sigma,a,\mathbf{i}+\mathbf{r}}(\tau)\hat{n}_{\sigma',b,\mathbf{r}}(0)\rangle, \end{align*}\]
where $\hat{n}_{\sigma', b,\mathbf{i}} = \hat{b}^\dagger_{\sigma', \mathbf{i}} \hat{b}_{\sigma, \mathbf{i}}$ is the number operator for an electron with spin $\sigma'$ on orbital $b$ in unit cell $\mathbf{i}$, with the result being added to the array DD
.
Fields
DD::AbstractArray{C,D}
: The array the spin-resolved density correlation $\mathcal{D}_{\mathbf{r}}^{(a,\sigma),(b,\sigma')}(\tau)$ is added to.a::Int
: Index specifying an orbital species in the unit cell.b::Int
: Index specifying an orbital species in the unit cell.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.Gσ_τ0::AbstractMatrix{T}
: The matrix $G_{\sigma}(\tau,0).$Gσ_0τ::AbstractMatrix{T}
: The matrix $G_{\sigma}(0,\tau).$Gσ_ττ::AbstractMatrix{T}
: The matrix $G_{\sigma}(\tau,\tau).$Gσ′_00::AbstractMatrix{T}
: The matrix $G_{\sigma'}(0,0).$σ::Int
: The electron spin appearing in the $\langle \hat{n} \rangle_{\sigma,a,\mathbf{i}+\mathbf{r}}$ density operator.σ′::Int
: The electron spin appearing in the $\langle \hat{n} \rangle_{\sigma',b,\mathbf{i}}$ density operator.sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
JDQMCMeasurements.spin_x_correlation!
— Functionspin_x_correlation!(
SxSx::AbstractArray{C,D}, a::Int, b::Int, unit_cell::UnitCell{D}, lattice::Lattice{D},
Gup_τ0::AbstractMatrix{T}, Gup_0τ::AbstractMatrix{T},
Gdn_τ0::AbstractMatrix{T}, Gdn_0τ::AbstractMatrix{T},
sgn=one(C)
) where {D, C<:Number, T<:Number}
Calculate the unequal-time spin-spin correlation function in the $\hat{x}$ direction, given by
\[\mathcal{S}_{x,\mathbf{r}}^{a,b}(\tau)=\frac{1}{N}\sum_{\mathbf{i}}\mathcal{S}_{x,\mathbf{i}+\mathbf{r},\mathbf{i}}^{ab}(\tau,0) =\frac{1}{N}\sum_{\mathbf{i}}\big\langle\hat{S}_{x,a,\mathbf{i}+\mathbf{r}}(\tau)\hat{S}_{x,b,\mathbf{i}}(0)\big\rangle,\]
where the spin-$\hat{x}$ operator is given by
\[\begin{align*} \hat{S}_{x,\mathbf{i},a}= & (\hat{a}_{\uparrow,\mathbf{i}}^{\dagger},\hat{a}_{\downarrow,\mathbf{i}}^{\dagger})\left[\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right]\left(\begin{array}{c} \hat{a}_{\uparrow,\mathbf{i}}\\ \hat{a}_{\downarrow,\mathbf{i}} \end{array}\right)\\ = & \hat{a}_{\uparrow,\mathbf{i}}^{\dagger}\hat{a}_{\downarrow,\mathbf{i}}+\hat{a}_{\downarrow,\mathbf{i}}^{\dagger}\hat{a}_{\uparrow,\mathbf{i}}. \end{align*}\]
Fields
SxSx::AbstractArray{C,D}
: Array the spin-$x$ correlation function $\mathcal{S}_{x,\mathbf{r}}^{a,b}(\tau)$ is added to.a::Int
: Index specifying an orbital species in the unit cell.b::Int
: Index specifying an orbital species in the unit cell.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.Gup_τ0::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,0).$Gup_0τ::AbstractMatrix{T}
: The matrix $G_{\uparrow}(0,\tau).$Gdn_τ0::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,0).$Gdn_0τ::AbstractMatrix{T}
: The matrix $G_{\downarrow}(0,\tau).$sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
```
JDQMCMeasurements.spin_z_correlation!
— Functionspin_z_correlation!(
SzSz::AbstractArray{C,D},
a::Int, b::Int, unit_cell::UnitCell{D}, lattice::Lattice{D},
Gup_τ0::AbstractMatrix{T}, Gup_0τ::AbstractMatrix{T},
Gup_ττ::AbstractMatrix{T}, Gup_00::AbstractMatrix{T},
Gdn_τ0::AbstractMatrix{T}, Gdn_0τ::AbstractMatrix{T},
Gdn_ττ::AbstractMatrix{T}, Gdn_00::AbstractMatrix{T},
sgn=one(C)
) where {D, C<:Complex, T<:Number}
Calculate the unequal-time spin-spin correlation function in the $\hat{z}$ direction, given by
\[\begin{align*} \mathcal{S}_{z,\mathbf{r}}^{a,b}(\tau)=\frac{1}{N}\sum_{\mathbf{i}}\mathcal{S}_{z,\mathbf{i}+\mathbf{r},\mathbf{i}}^{ab}(\tau,0) = & \frac{1}{N}\sum_{\mathbf{i}}\big\langle\hat{S}_{z,a,\mathbf{i}+\mathbf{r}}(\tau)\hat{S}_{z,b,\mathbf{i}}(0)\big\rangle, \end{align*}\]
where the spin-$\hat{z}$ operator is given by
\[\begin{align*} \hat{S}_{z,a,\mathbf{i}}= & (\hat{a}_{\uparrow,\mathbf{i}}^{\dagger},\hat{a}_{\downarrow,\mathbf{i}}^{\dagger})\left[\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right]\left(\begin{array}{c} \hat{a}_{\uparrow,\mathbf{i}}\\ \hat{a}_{\downarrow,\mathbf{i}} \end{array}\right)\\ = & \hat{n}_{\uparrow,a,\mathbf{i}}-\hat{n}_{\downarrow,a,\mathbf{i}}. \end{align*}\]
Fields
SzSz::AbstractArray{C,D}
: Array the spin-$z$ correlation function $\mathcal{S}_{z,\mathbf{r}}^{a,b}(\tau)$ is added to.a::Int
: Index specifying an orbital species in the unit cell.b::Int
: Index specifying an orbital species in the unit cell.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.Gup_τ0::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,0).$Gup_0τ::AbstractMatrix{T}
: The matrix $G_{\uparrow}(0,\tau).$Gup_ττ::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,\tau).$Gup_00::AbstractMatrix{T}
: The matrix $G_{\uparrow}(0,0).$Gdn_τ0::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,0).$Gdn_0τ::AbstractMatrix{T}
: The matrix $G_{\downarrow}(0,\tau).$Gdn_ττ::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,\tau).$Gdn_00::AbstractMatrix{T}
: The matrix $G_{\downarrow}(0,0).$sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
JDQMCMeasurements.pair_correlation!
— Functionpair_correlation!(
P::AbstractArray{C,D},
b″::Bond{D}, b′::Bond{D}, unit_cell::UnitCell{D}, lattice::Lattice{D},
Gup_τ0::AbstractMatrix{T}, Gdn_τ0::AbstractMatrix{T},
sgn=one(C)
) where {D, C<:Number, T<:Number}
Calculate the unequal-time pair correlation function
\[\mathcal{P}_{\mathbf{r}}^{(a,b,r''),(c,d,r')}(\tau)=\frac{1}{N}\sum_{\mathbf{i}}\mathcal{P}_{\mathbf{i}+\mathbf{r},\mathbf{i}}^{(a,b,r''),(c,d,r')}(\tau,0) =\frac{1}{N}\sum_{\mathbf{i}}\langle\hat{\Delta}_{\mathbf{i}+\mathbf{r},a,b,\mathbf{r}''}(\tau)\hat{\Delta}_{\mathbf{i},c,d,\mathbf{r}'}^{\dagger}(0)\rangle,\]
where the bond b″
defines the pair creation operator
\[\hat{\Delta}_{\mathbf{i},a,b,\mathbf{r}''}^{\dagger}=\hat{a}_{\uparrow,\mathbf{i}+\mathbf{r}''}^{\dagger}\hat{b}_{\downarrow,\mathbf{i}}^{\dagger},\]
and the bond b′
defines the pair creation operator
\[\hat{\Delta}_{\mathbf{i},c,d,\mathbf{r}'}^{\dagger}=\hat{c}_{\uparrow,\mathbf{i}+\mathbf{r}'}^{\dagger}\hat{d}_{\downarrow,\mathbf{i}}^{\dagger}.\]
Fields
P::AbstractArray{C,D}
: Array the pair correlation function $\mathcal{P}_{\mathbf{r}}^{(a,b,r''),(c,d,r')}(\tau)$ is added to.b″::Bond{D}
: Bond defining pair annihilation operator appearing in pair correlation function.b′::Bond{D}
: Bond defining pair creation operator appearing in pair correlation function.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.Gup_τ0::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,0).$Gdn_τ0::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,0).$sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
JDQMCMeasurements.bond_correlation!
— Functionbond_correlation!(
BB::AbstractArray{C,D},
b′::Bond{D}, b″::Bond{D}, unit_cell::UnitCell{D}, lattice::Lattice{D},
Gup_τ0::AbstractMatrix{T}, Gup_0τ::AbstractMatrix{T},
Gup_ττ::AbstractMatrix{T}, Gup_00::AbstractMatrix{T},
Gdn_τ0::AbstractMatrix{T}, Gdn_0τ::AbstractMatrix{T},
Gdn_ττ::AbstractMatrix{T}, Gdn_00::AbstractMatrix{T},
sgn=one(C)
) where {D, C<:Number, T<:Number}
Calculate the uneqaul-time bond-bond correlation function
\[\begin{align*} \mathcal{B}_{\mathbf{r}}^{(\mathbf{r}',a,b),(\mathbf{r}'',c,d)}(\tau) = & \frac{1}{N}\sum_{\mathbf{i}} \langle[\hat{B}_{\uparrow,\mathbf{i}+\mathbf{r},(\mathbf{r}',a,b)}(\tau)+\hat{B}_{\downarrow,\mathbf{i}+\mathbf{r},(\mathbf{r}',a,b)}(\tau)] \cdot[\hat{B}_{\uparrow,\mathbf{i},(\mathbf{r}'',c,d)}(0)+\hat{B}_{\downarrow,\mathbf{i},(\mathbf{r}'',c,d)}(0)]\rangle \end{align*}\]
where the
\[\hat{B}_{\sigma,\mathbf{i},(\mathbf{r},a,b)} = \hat{a}_{\sigma,\mathbf{i}+\mathbf{r}}^{\dagger}\hat{b}_{\sigma,\mathbf{i}}^{\phantom{\dagger}} + \hat{b}_{\sigma,\mathbf{i}}^{\dagger}\hat{a}_{\sigma,\mathbf{i}+\mathbf{r}}^{\phantom{\dagger}}\]
is the bond operator.
Fields
BB::AbstractArray{C,D}
: Array the bond correlation function $\mathcal{B}_{\mathbf{r}}^{(\mathbf{r}',a,b),(\mathbf{r}'',c,d)}(\tau)$ is added to.b′::Bond{D}
: Bond defining the bond operator appearing on the left side of the bond correlation function.b″::Bond{D}
: Bond defining the bond operator appearing on the right side of the bond correlation function.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.Gup_τ0::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,0).$Gup_0τ::AbstractMatrix{T}
: The matrix $G_{\uparrow}(0,\tau).$Gup_ττ::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,\tau).$Gup_00::AbstractMatrix{T}
: The matrix $G_{\uparrow}(0,0).$Gdn_τ0::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,0).$Gdn_0τ::AbstractMatrix{T}
: The matrix $G_{\downarrow}(0,\tau).$Gdn_ττ::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,\tau).$Gdn_00::AbstractMatrix{T}
: The matrix $G_{\downarrow}(0,0).$sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
bond_correlation!(
BB::AbstractArray{C,D},
b′::Bond{D}, b″::Bond{D}, unit_cell::UnitCell{D}, lattice::Lattice{D},
Gσ′_τ0::AbstractMatrix{T}, Gσ′_0τ::AbstractMatrix{T},
Gσ′_ττ::AbstractMatrix{T}, Gσ″_00::AbstractMatrix{T},
σ′::Int, σ″::Int, sgn=one(C)
) where {D, C<:Number, T<:Number}
Calculate the spin-resolved uneqaul-time bond-bond correlation function
\[\begin{align*} \mathcal{B}_{\mathbf{r}}^{(\mathbf{r}',a,b,\sigma'),(\mathbf{r}'',c,d,\sigma'')}(\tau) = \frac{1}{N}\sum_{\mathbf{i}} & \mathcal{B}_{\mathbf{i}+\mathbf{r},\mathbf{i}}^{(\mathbf{r}',a,b,\sigma'),(\mathbf{r}'',c,d,\sigma'')}(\tau,0)\\ =\frac{1}{N}\sum_{\mathbf{i}} & \langle\hat{B}_{\sigma',\mathbf{i}+\mathbf{r},(\mathbf{r}',a,b)}(\tau)\hat{B}_{\sigma'',\mathbf{i},(\mathbf{r}'',c,d)}(0)\rangle, \end{align*}\]
where
\[\begin{align*} \hat{B}_{\sigma,\mathbf{i},(\mathbf{r},a,b)} & = \hat{a}_{\sigma,\mathbf{i}+\mathbf{r}}^{\dagger}\hat{b}_{\sigma,\mathbf{i}}^{\phantom{\dagger}}+\hat{b}_{\sigma,\mathbf{i}}^{\dagger}\hat{a}_{\sigma,\mathbf{i}+\mathbf{r}}^{\phantom{\dagger}}\\ & = -\hat{a}_{\sigma,\mathbf{i}+\mathbf{r}}^{\phantom{\dagger}}\hat{b}_{\sigma,\mathbf{i}}^{\dagger}-\hat{b}_{\sigma,\mathbf{i}}^{\phantom{\dagger}}\hat{a}_{\sigma,\mathbf{i}+\mathbf{r}}^{\dagger} \end{align*}\]
is the bond operator.
Fields
BB::AbstractArray{C,D}
: Array the spin-resolved bond correlation function $\mathcal{B}_{\mathbf{r}}^{(\mathbf{r}',a,b,\sigma'),(\mathbf{r}'',c,d,\sigma'')}(\tau)$ is added to.b′::Bond{D}
: Bond defining the bond operator appearing on the left side of the bond correlation function.b″::Bond{D}
: Bond defining the bond operator appearing on the right side of the bond correlation function.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.Gσ′_τ0::AbstractMatrix{T}
: The matrix $G_{\sigma'}(\tau,0).$Gσ′_0τ::AbstractMatrix{T}
: The matrix $G_{\sigma'}(0,\tau).$Gσ′_ττ::AbstractMatrix{T}
: The matrix $G_{\sigma'}(\tau,\tau).$Gσ″_00::AbstractMatrix{T}
: The matrix $G_{\sigma''}(0,0).$σ′::Int
: The electron spin appearing in the $\hat{B}_{\sigma',\mathbf{i}+\mathbf{r},(\mathbf{r}',a,b)}$ bond operator.σ″::Int
: The electron spin appearing in the $\hat{B}_{\sigma'',\mathbf{i},(\mathbf{r}'',c,d)}$ bond operator.sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
JDQMCMeasurements.current_correlation!
— Functioncurrent_correlation!(
CC::AbstractArray{C,D},
b′::Bond{D}, b″::Bond{D},
tup′::AbstractArray{T,D}, tup″::AbstractArray{T,D},
tdn′::AbstractArray{T,D}, tdn″::AbstractArray{T,D},
unit_cell::UnitCell{D}, lattice::Lattice{D},
Gup_τ0::AbstractMatrix{T}, Gup_0τ::AbstractMatrix{T},
Gup_ττ::AbstractMatrix{T}, Gup_00::AbstractMatrix{T},
Gdn_τ0::AbstractMatrix{T}, Gdn_0τ::AbstractMatrix{T},
Gdn_ττ::AbstractMatrix{T}, Gdn_00::AbstractMatrix{T},
sgn=one(C)
) where {D, C<:Number, T<:Number}
Calculate the uneqaul-time current-current correlation function
\[\mathcal{J}_{\mathbf{r}}^{(\mathbf{r}',a,b),(\mathbf{r}'',c,d)}(\tau) = \frac{1}{N}\sum_{\mathbf{i}} \langle[\hat{J}_{\uparrow,\mathbf{i}+\mathbf{r},(\mathbf{r}',a,b)}(\tau)+\hat{J}_{\downarrow,\mathbf{i}+\mathbf{r},(\mathbf{r}',a,b)}(\tau)] \cdot[\hat{J}_{\uparrow,\mathbf{i},(\mathbf{r}'',c,d)}(0)+\hat{J}_{\downarrow,\mathbf{i},(\mathbf{r}'',c,d)}(0)]\rangle,\]
where the spin-resolved current operator is given by
\[\begin{align*} \hat{J}_{\sigma,\mathbf{i},(\mathbf{r},a,b)} & = -{\rm i}(t_{\sigma,\mathbf{i}+\mathbf{r},\mathbf{i}}^{a,b} \hat{a}_{\sigma,\mathbf{i}+\mathbf{r}}^{\dagger}\hat{b}_{\sigma,\mathbf{i}} - t_{\sigma,\mathbf{i}, \mathbf{i}+\mathbf{r}}^{b,a} \hat{b}_{\sigma,\mathbf{i}}^{\dagger}\hat{a}_{\sigma,\mathbf{i}+\mathbf{r}})\\ \end{align*}\]
and $t_{\sigma,\mathbf{i}, \mathbf{i}+\mathbf{r}}^{b,a} = \big( t_{\sigma,\mathbf{i}+\mathbf{r},\mathbf{i}}^{a,b} \big)^*$.
Fields
CC::AbstractArray{C,D}
: Array the current correlation function $\mathcal{J}_{\mathbf{r}}^{(\mathbf{r}',a,b),(\mathbf{r}'',c,d)}(\tau)$ is added to.b′::Bond{D}
: Bond defining the current operator appearing on the left side of the current correlation function.b″::Bond{D}
: Bond defining the current operator appearing on the right side of the current correlation function.tup′::AbstractArray{T,D}
: Spin up position and imaginary time dependent hopping amplitudes corresponding to bondb′
.tup″::AbstractArray{T,D}
: Spin up position and imaginary time dependent hopping amplitudes corresponding to bondb″
.tdn′::AbstractArray{T,D}
: Spin down position and imaginary time dependent hopping amplitudes corresponding to bondb′
.tdn″::AbstractArray{T,D}
: Spin down position and imaginary time dependent hopping amplitudes corresponding to bondb″
.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.Gup_τ0::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,0).$Gup_0τ::AbstractMatrix{T}
: The matrix $G_{\uparrow}(0,\tau).$Gup_ττ::AbstractMatrix{T}
: The matrix $G_{\uparrow}(\tau,\tau).$Gup_00::AbstractMatrix{T}
: The matrix $G_{\uparrow}(0,0).$Gdn_τ0::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,0).$Gdn_0τ::AbstractMatrix{T}
: The matrix $G_{\downarrow}(0,\tau).$Gdn_ττ::AbstractMatrix{T}
: The matrix $G_{\downarrow}(\tau,\tau).$Gdn_00::AbstractMatrix{T}
: The matrix $G_{\downarrow}(0,0).$sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
current_correlation!(
CC::AbstractArray{C,D},
b′::Bond{D}, b″::Bond{D},
t′::AbstractArray{T,D}, t″::AbstractArray{T,D},
unit_cell::UnitCell{D}, lattice::Lattice{D},
Gσ′_τ0::AbstractMatrix{T}, Gσ′_0τ::AbstractMatrix{T},
Gσ′_ττ::AbstractMatrix{T}, Gσ″_00::AbstractMatrix{T},
σ′::Int, σ″::Int, sgn=one(C)
) where {D, C<:Number, T<:Number}
Calculate the spin-resolved uneqaul-time current-current correlation function
\[\begin{align*} \mathcal{J}_{\mathbf{r}}^{(\mathbf{r}',a,b,\sigma'),(\mathbf{r}'',c,d,\sigma'')}(\tau) & = \frac{1}{N}\sum_{\mathbf{i}}\mathcal{J}_{\mathbf{i}+\mathbf{r},\mathbf{i}}^{(\mathbf{r}',a,b,\sigma'),(\mathbf{r}'',c,d,\sigma'')}(\tau,0)\\ & = \frac{1}{N}\sum_{\mathbf{i}}\langle\hat{J}_{\sigma',\mathbf{i}+\mathbf{r},(\mathbf{r}',a,b)}(\tau)\hat{J}_{\sigma'',\mathbf{i},(\mathbf{r}'',c,d)}(0)\rangle, \end{align*}\]
where the spin-resolved current operator is given by
\[\begin{align*} \hat{J}_{\sigma,\mathbf{i},(\mathbf{r},a,b)} & = -{\rm i}(t_{\sigma,\mathbf{i}+\mathbf{r},\mathbf{i}}^{a,b} \hat{a}_{\sigma,\mathbf{i}+\mathbf{r}}^{\dagger}\hat{b}_{\sigma,\mathbf{i}} - t_{\sigma,\mathbf{i}, \mathbf{i}+\mathbf{r}}^{b,a} \hat{b}_{\sigma,\mathbf{i}}^{\dagger}\hat{a}_{\sigma,\mathbf{i}+\mathbf{r}})\\ \end{align*}\]
and $t_{\sigma,\mathbf{i}, \mathbf{i}+\mathbf{r}}^{b,a} = \big( t_{\sigma,\mathbf{i}+\mathbf{r},\mathbf{i}}^{a,b} \big)^*$.
Fields
CC::AbstractArray{C,D}
: Array the spin-resolved current correlation function $\mathcal{J}_{\mathbf{r}}^{(\mathbf{r}',a,b,\sigma'),(\mathbf{r}'',c,d,\sigma'')}(\tau)$ is added to.b′::Bond{D}
: Bond defining the current operator appearing on the left side of the current correlation function.b″::Bond{D}
: Bond defining the current operator appearing on the right side of the current correlation function.t′::AbstractArray{T,D}
: Position and imaginary time dependent hopping amplitude associated with bondb′
.t″::AbstractArray{T,D}
: Position and imaginary time dependent hopping amplitude associated with bondb″
.unit_cell::UnitCell{D}
: Defines unit cell.lattice::Lattice{D}
: Specifies size of finite lattice.Gσ′_τ0::AbstractMatrix{T}
: The matrix $G_{\sigma'}(\tau,0).$Gσ′_0τ::AbstractMatrix{T}
: The matrix $G_{\sigma'}(0,\tau).$Gσ′_ττ::AbstractMatrix{T}
: The matrix $G_{\sigma'}(\tau,\tau).$Gσ″_00::AbstractMatrix{T}
: The matrix $G_{\sigma''}(0,0).$σ′::Int
: The electron spin appearing in the left current operator.σ″::Int
: The electron spin appearing in the right current operator.sgn=one(C)
: The sign of the weight appearing in a DQMC simulation.
Scalar Measurements
JDQMCMeasurements.measure_n
— Functionmeasure_n(G::AbstractMatrix{T}) where {T}
Measure the average density $\langle \hat{n}_\sigma \rangle$ given the equal-time Green's function matrix $G_\sigma(\tau,\tau).$
measure_n(G::AbstractMatrix{T}, a::Int, unit_cell::UnitCell) where {T}
Measure the average density $\langle \hat{n}_{\sigma,a} \rangle$ for orbital species $a,$ given the equal-time Green's function matrix $G_\sigma(\tau,\tau).$
JDQMCMeasurements.measure_double_occ
— Functionmeasure_double_occ(Gup::AbstractMatrix{T}, Gdn::AbstractMatrix{T}) where {T}
Measure the double-occupancy $\langle \hat{n}_\uparrow \hat{n}_\downarrow \rangle$ given both the spin-up and spin-down equal-time Green's function matrices $G_\uparrow(\tau,\tau)$ and $G_\downarrow(\tau,\tau)$ respectively.
measure_double_occ(Gup::AbstractMatrix{T}, Gdn::AbstractMatrix{T}, a::Int, unit_cell::UnitCell) where {T}
Measure the double-occupancy $\langle \hat{n}_{\uparrow,a} \hat{n}_{\downarrow,a} \rangle$ for orbital species $a,$ given both the spin-up and spin-down equal-time Green's function matrices $G_\uparrow(\tau,\tau)$ and $G_\downarrow(\tau,\tau)$ respectively.
JDQMCMeasurements.measure_N
— Functionmeasure_N(G::AbstractMatrix{T}) where {T}
Measure the total particle number $\langle \hat{N}_\sigma \rangle$ given an equal-time Green's function matrix $G_\sigma(\tau,\tau).$
measure_N(G::AbstractMatrix{T}, a::Int, unit_cell::UnitCell) where {T}
Measure the total particle number $\langle \hat{N}_{\sigma,a} \rangle$ in orbital species $a,$ given an equal-time Green's function matrix $G_\sigma(\tau,\tau).$
JDQMCMeasurements.measure_Nsqrd
— Functionmeasure_Nsqrd(Gup::AbstractMatrix{T}, Gdn::AbstractMatrix{T}) where {T}
Measure the expectation value of the total particle number squared $\langle \hat{N}^2 \rangle$ given both the spin-up and spin-down equal-time Green's function matrices $G_\uparrow(\tau,\tau)$ and $G_\downarrow(\tau,\tau)$ respectively.
Utility Functions
JDQMCMeasurements.cubic_spline_τ_to_ωn!
— Functioncubic_spline_τ_to_ωn!(
Cn::AbstractVector{Complex{E}},
Cτ::AbstractVector{T},
β::E, Δτ::E;
spline_type::String = "C2",
M1::T = NaN,
M2::T = NaN
) where {E<:AbstractFloat, T<:Number}
Calculate the Matsubara frequency representation
\[\begin{align*} C(\mathrm{i}\omega_n) = \int_0^\beta d\tau \ e^{\mathrm{i}\omega_n\tau} C(\tau) \end{align*}\]
of an imaginary-time correlation function $C(\tau)$ defined on a regular grid of $L + 1$ imaginary-time points $\tau \in \{ 0, \Delta\tau, 2\Delta\tau, \ldots, (\beta-\Delta\tau), \beta \}.$ This is done by fitting a cubic spline through the $C(\tau)$ points, and then transforming the spline. Here, the Matsubara correlations $C(\mathrm{i}\omega_n)$ are written to the vector Cn
, and the imaginary-time correlations $C(\tau)$ are stored in the vector Cτ
. It is assumed that C[1]
and C[end]
correspond to $C(\tau = 0)$ and $C(\tau = \beta)$ respectively. It is also assumed that $L = \beta/\Delta\tau.$
Note that the length of the vector Cn
determines whether the correlation function is assumed to be fermionic or bosonic.
For fermoinic correlation functions, mod(M, 2L) == 0
, where M = length(Cn)
and L = length(Cτ) - 1
. Put another way, it must be that length(Cn) == 2*n*(length(Cτ)-1)
for some positive integer n ≥ 1
. In this case the vector Cn
contains Matsubara frequency correlation $C(\mathrm{i}\omega_n)$ for $n \in [-N, (N-1)]$, where N = M÷2
and $\omega_n = (2n+1)\pi/\beta$.
For bosonic correlation functions mod(M+1, 2L) == 0
, where M = length(Cn)
and L = length(Cτ) - 1
. Put another way, it must be that length(Cn) == 2*n*(length(Cτ)-1) - 1
for some positive integer n ≥ 1
. In this case the vector Cn
contains Matsubara frequency correlation $C(\mathrm{i}\omega_n)$ for $n \in [-N, N]$, where N = (M-1)÷2
and $\omega_n = 2n\pi/\beta$.
The spline_type
argument can be set to "C2"
, "akima"
, or "makima"
to specify the type of spline to use. The default argument (and best for most cases) is "C2"
, which refers to a C2 cubic spline with continuous first and second derivatives. In this case, boundary conditions are imposed such that the second derivative of the spline at τ=0
and τ=β
are set equal to the second derivative as calculated using a second-order forward and backward finite difference respectively.
The M1
and M2
arguments can be used to specify the first and second moments of the spectral function if known. By default the are set to NaN
, which results in them being calculated internally based on the imaginary-time correlation function data points and corresponding spline fit.
JDQMCMeasurements.fourier_transform!
— Functionfourier_transform!(
C::AbstractArray{Complex{T}},
a::Int,
b::Int,
dims,
unit_cell::UnitCell{D,T},
lattice::Lattice{D}
) where {D, T<:AbstractFloat}
fourier_transform!(C::AbstractArray{Complex{T}},
a::Int,
b::Int,
unit_cell::UnitCell{D,T},
lattice::Lattice{D}
) where {D, T<:AbstractFloat}
Calculate the fourier transform from position to momentum space
\[\begin{align*} C_{\mathbf{k}}^{a,b}= & \sum_{\mathbf{r}}e^{{\rm -i}\mathbf{k}\cdot(\mathbf{r}+\mathbf{r}_{a}-\mathbf{r}_{b})}C_{\mathbf{r}}^{a,b} \end{align*}\]
where $a$ and $b$ specify orbital species in the unit cell. Note that the array C
is modified in-place. If dims
is passed, iterate over these dimensions of the array, performing a fourier transform on each slice.
JDQMCMeasurements.susceptibility!
— Functionsusceptibility!(χ::AbstractArray{T}, S::AbstractArray{T}, Δτ::E, dim::Int) where {T<:Number, E<:AbstractFloat}
Calculate the susceptibilities
\[\chi_\mathbf{n} = \int_0^\beta S_\mathbf{n}(\tau) d\tau,\]
where the $\chi_\mathbf{n}$ susceptibilities are written to χ
, and S
contains the $S_\mathbf{n}(\tau)$ correlations that need to be integrated over. The parameter Δτ
is the discretization in imaginary time $\tau,$ and is the step size used in Simpson's method to numerically evaluate the integral over imaginary time. The argument dim
specifies which dimension of S
corresponds to imaginary time, and needs to be integrated over. Accordingly,
ndim(χ)+1 == ndim(S)
and
size(χ) == size(selectdim(S, dim, 1))
must both be true.
JDQMCMeasurements.susceptibility
— Functionsusceptibility(S::AbstractVector{T}, Δτ::E) where {T<:Number, E<:AbstractFloat}
Calculate the suceptibility
\[\chi = \int_0^\beta S(\tau) d\tau,\]
where the correlation data is stored in S
. The integration is performed using Simpson's method using a step size of Δτ
.
JDQMCMeasurements.jackknife
— Functionjackknife(
g::Function,
samples...;
# KEYWORD ARGUMENTS
bias_corrected = true,
jackknife_samples = similar.(samples),
jackknife_g = similar(samples[1])
)
Propagate errors through the evaluation of a function g
given the binned samples
, returning both the mean and error. If the keyword argument bias = true
, then the $\mathcal{O}(1/N)$ bias is corrected. The keyword arguments jackknife_samples
and jackknife_g
can be passed to avoid temporary memory allocations.
Developer API
JDQMCMeasurements.average_Gr0
JDQMCMeasurements.average_ηGr0
JDQMCMeasurements.contract_G00!
JDQMCMeasurements.contract_Gr0!
JDQMCMeasurements.contract_Grr_G00!
JDQMCMeasurements.contract_Gr0_Gr0!
JDQMCMeasurements.contract_G0r_Gr0!
JDQMCMeasurements.simpson
JDQMCMeasurements.average_Gr0
— Functionaverage_Gr0(
G::AbstractMatrix{T},
r::Bond{D}, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, T<:Number, E<:AbstractFloat}
Calculate the translationally averaged Green's function
G_\mathbf{r}^(a,b) = \frac{1}{N} \sum_{\mathbf{i}} G_{\mathbf{i}+\mathbf{r},\mathbf{i}}^{a,b}
defined by the bond r
, which corresponds to the displacement $\mathbf{r} + (\mathbf{u}_a-\mathbf{u}_b).$
JDQMCMeasurements.average_ηGr0
— Functionaverage_ηGr0(
G::AbstractMatrix{T}, η::AbstractArray{T,D},
r::Bond{D}, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, T<:Number, E<:AbstractFloat}
Calculate and return the sum
\[\frac{1}{N} \sum_{\mathbf{i}} \eta_{\mathbf{i}} G_{\mathbf{i}+\mathbf{r},\mathbf{i}}^{a,b},\]
where the bond r
defines the displacement $\mathbf{r} + (\mathbf{u}_a-\mathbf{u}_b).$
JDQMCMeasurements.contract_G00!
— Functioncontract_G00!(
S::AbstractArray{C}, G::AbstractMatrix{T},
a::Int, b::Int, α::Int,
unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[\begin{align*} S_{\mathbf{r}} := S_{\mathbf{r}} + \frac{\alpha}{N}\sum_{\mathbf{i}}G_{\sigma,\mathbf{i},\mathbf{i}}^{a,b}(\tau,0) \end{align*}\]
for all $\mathbf{r}.$
JDQMCMeasurements.contract_Gr0!
— Functioncontract_Gr0!(
S::AbstractArray{C,D}, G::AbstractMatrix{T},
r′::Bond{D}, α::Int,
unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}} G_{\sigma,\mathbf{i}+\mathbf{r}+\mathbf{r}_{1},\mathbf{i}}^{a,b}(\tau,0)\]
for all $\mathbf{r},$ where the bond r′
represents the static displacement $\mathbf{r}_1+(\mathbf{r}_a-\mathbf{r}_b).$
contract_Gr0!(
S::AbstractArray{C,D}, G::AbstractMatrix{T},
η::AbstractArray{T}, r′::Bond{D}, α::Int,
unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}} \eta_{\mathbf{i}} G_{\sigma,\mathbf{i}+\mathbf{r}+\mathbf{r}_{1},\mathbf{i}}^{a,b}(\tau,0)\]
for all $\mathbf{r},$ where the bond r′
represents the static displacement $\mathbf{r}_1+(\mathbf{r}_a-\mathbf{r}_b).$
JDQMCMeasurements.contract_Grr_G00!
— Functioncontract_Grr_G00!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
b₂::Bond{D}, b₁::Bond{D},
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}}G_{\sigma_{2},\mathbf{i}+\mathbf{r}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}_{1},\mathbf{i}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r},$ where the bond b₂
represents the static displacement $\mathbf{r}_2 + (\mathbf{r}_a - \mathbf{r}_b),$ and the bond b₁
represents the static displacement $\mathbf{r}_1 + (\mathbf{r}_c - \mathbf{r}_d).$
contract_Grr_G00!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
η₂::AbstractArray{T}, η₁::AbstractArray{T}, b₂::Bond{D}, b₁::Bond{D},
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C), conj_η₂::Bool = false, conj_η₁::Bool = false
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}} \eta_{2,\mathbf{i}+\mathbf{r}}\eta_{1,\mathbf{i}} G_{\sigma_{2},\mathbf{i}+\mathbf{r}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}_{1},\mathbf{i}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r},$ where the bond b₂
represents the static displacement $\mathbf{r}_2 + (\mathbf{r}_a - \mathbf{r}_b),$ and the bond b₁
represents the static displacement $\mathbf{r}_1 + (\mathbf{r}_c - \mathbf{r}_d).$
contract_Grr_G00!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
a::Int, b::Int, c::Int, d::Int,
r₄::AbstractVector{Int}, r₃::AbstractVector{Int}, r₂::AbstractVector{Int}, r₁::AbstractVector{Int},
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}} G_{\sigma_{2},\mathbf{i}+\mathbf{r}+\mathbf{r}_{4},\mathbf{i}+\mathbf{r}+\mathbf{r}_{3}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}_{1}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r}.$
contract_Grr_G00!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
η₂::AbstractArray{T}, η₁::AbstractArray{T}, a::Int, b::Int, c::Int, d::Int,
r₄::AbstractVector{Int}, r₃::AbstractVector{Int}, r₂::AbstractVector{Int}, r₁::AbstractVector{Int},
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C), conj_η₂::Bool = false, conj_η₁::Bool = false
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}} \eta_{2,\mathbf{i}+\mathbf{r}}\eta_{1,\mathbf{i}} G_{\sigma_{2},\mathbf{i}+\mathbf{r}+\mathbf{r}_{4},\mathbf{i}+\mathbf{r}+\mathbf{r}_{3}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}_{1}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r}.$
JDQMCMeasurements.contract_Gr0_Gr0!
— Functioncontract_Gr0_Gr0!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T}, b₂::Bond, b₁::Bond,
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}}G_{\sigma_{2},\mathbf{i}+\mathbf{r}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}_{1}}^{a,c}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r},\mathbf{i}}^{b,d}(\tau_{1},0)\]
for all $\mathbf{r},$ where the bond b₂
represents the static displacement $\mathbf{r}_2 + (\mathbf{r}_a - \mathbf{r}_b),$ and the bond b₁
represents the static displacement $\mathbf{r}_1 + (\mathbf{r}_c - \mathbf{r}_d).$
contract_Gr0_Gr0!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
η₂::AbstractArray{T}, η₁::AbstractArray{T}, b₂::Bond, b₁::Bond,
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C), conj_η₂::Bool = false, conj_η₁::Bool = false
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}} \eta_{2,\mathbf{i}+\mathbf{r}}\eta_{1,\mathbf{i}} G_{\sigma_{2},\mathbf{i}+\mathbf{r}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}_{1}}^{a,c}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r},\mathbf{i}}^{b,d}(\tau_{1},0)\]
for all $\mathbf{r},$ where the bond b₂
represents the static displacement $\mathbf{r}_2 + (\mathbf{r}_a - \mathbf{r}_b),$ and the bond b₁
represents the static displacement $\mathbf{r}_1 + (\mathbf{r}_c - \mathbf{r}_d).$
contract_Gr0_Gr0!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
a::Int, b::Int, c::Int, d::Int,
r₄::AbstractVector{Int}, r₃::AbstractVector{Int}, r₂::AbstractVector{Int}, r₁::AbstractVector{Int},
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}}G_{\sigma_{2},\mathbf{i}+\mathbf{r}+\mathbf{r}_{4},\mathbf{i}+\mathbf{r}_{3}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}_{1}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r}.$
contract_Gr0_Gr0!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
η₂::AbstractArray{T}, η₁::AbstractArray{T}, a::Int, b::Int, c::Int, d::Int,
r₄::AbstractVector{Int}, r₃::AbstractVector{Int}, r₂::AbstractVector{Int}, r₁::AbstractVector{Int},
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C), conj_η₂::Bool = false, conj_η₁::Bool = false
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}} \eta_{2,\mathbf{i}+\mathbf{r}}\eta_{1,\mathbf{i}} G_{\sigma_{2},\mathbf{i}+\mathbf{r}+\mathbf{r}_{4},\mathbf{i}+\mathbf{r}_{3}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}_{1}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r}.$
JDQMCMeasurements.contract_G0r_Gr0!
— Functioncontract_G0r_Gr0!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
b₂::Bond, b₁::Bond, α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}}G_{\sigma_{2},\mathbf{i}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}+\mathbf{r}_{1},\mathbf{i}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r},$ where the bond b₂
represents the static displacement $\mathbf{r}_2 + (\mathbf{r}_a - \mathbf{r}_b),$ and the bond b₁
represents the static displacement $\mathbf{r}_1 + (\mathbf{r}_c - \mathbf{r}_d).$
contract_G0r_Gr0!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
η₂::AbstractArray{T}, η₁::AbstractArray{T}, b₂::Bond, b₁::Bond,
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C), conj_η₂::Bool = false, conj_η₁::Bool = false
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}} \eta_{2,\mathbf{i}+\mathbf{r}}\eta_{1,\mathbf{i}} G_{\sigma_{2},\mathbf{i}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}+\mathbf{r}_{1},\mathbf{i}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r},$ where the bond b₂
represents the static displacement $\mathbf{r}_2 + (\mathbf{r}_a - \mathbf{r}_b),$ and the bond b₁
represents the static displacement $\mathbf{r}_1 + (\mathbf{r}_c - \mathbf{r}_d).$
contract_G0r_Gr0!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
a::Int, b::Int, c::Int, d::Int,
r₄::AbstractVector{Int}, r₃::AbstractVector{Int}, r₂::AbstractVector{Int}, r₁::AbstractVector{Int},
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C)
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}}G_{\sigma_{2},\mathbf{i}+\mathbf{r}_{4},\mathbf{i}+\mathbf{r}+\mathbf{r}_{3}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}_{1}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r}.$
function contract_G0r_Gr0!(
S::AbstractArray{C,D}, G₂::AbstractMatrix{T}, G₁::AbstractMatrix{T},
η₂::AbstractArray{T}, η₁::AbstractArray{T}, a::Int, b::Int, c::Int, d::Int,
r₄::AbstractVector{Int}, r₃::AbstractVector{Int}, r₂::AbstractVector{Int}, r₁::AbstractVector{Int},
α::Int, unit_cell::UnitCell{D,E}, lattice::Lattice{D},
sgn=one(C), conj_η₂::Bool = false, conj_η₁::Bool = false
) where {D, C<:Complex, T<:Number, E<:AbstractFloat}
Evaluate the sum
\[S_{\mathbf{r}}:=S_{\mathbf{r}}+\frac{\alpha}{N}\sum_{\mathbf{i}} \eta_{2,\mathbf{i}+\mathbf{r}}\eta_{1,\mathbf{i}} G_{\sigma_{2},\mathbf{i}+\mathbf{r}_{4},\mathbf{i}+\mathbf{r}+\mathbf{r}_{3}}^{a,b}(\tau_{2},0)\cdot G_{\sigma_{1},\mathbf{i}+\mathbf{r}+\mathbf{r}_{2},\mathbf{i}+\mathbf{r}_{1}}^{c,d}(\tau_{1},0)\]
for all $\mathbf{r}.$
JDQMCMeasurements.simpson
— Functionsimpson(f::AbstractVector{T}, dx::E) where {T<:Number, E<:AbstractFloat}
Applying Simpson's rule, integrate over the vector f
using a stepsize dx
.