API

LatticeUtilities.BondType
Bond{D}

Defines a bond in a D dimensional lattice.

Fields

  • orbitals::NTuple{2,Int}: Orbital pair associated with bond. Bond goes from orbitals[1] to orbitals[2].
  • displacement::SVector{D,Int}: Displacement in unit cells in the direction of each lattice vector associated with bond.
source
LatticeUtilities.LatticeType
Lattice{D}

A type defining a finite lattice in D dimensions.

Fields

  • N::Int: Number of unit cells in finite lattice.
  • L::SVector{D,Int}: Size of finite lattice in the direction of each lattice vector in unit cells.
  • periodic::SVector{D,Bool}: Specifies whether each lattice vector direction hosts periodic or open boundary conditions.
  • lvec::MVector{D,Int}: (private) Temporary storage vector containing intermediate location and displacement vectors.
source
LatticeUtilities.UnitCellType
UnitCell{D,T<:AbstractFloat,N}

A type defining a unit cell in D spatial dimensions.

Fields

  • n::Int: Number of orbitals in the unit cell.
  • lattice_vecs::SMatrix{D,D,T,N}: Matrix where columns give the lattice vectors.
  • reciprocal_vecs::SMatrix{D,D,T,N}: Matrix where columns give the reciprocal lattice vectors.
  • basis_vecs::Vector{SVector{D,T}}: Vector of basis vectors specifying the location of each orbital in unit cell.
source
LatticeUtilities.UnitCellMethod
UnitCell(lattice_vecs::AbstractMatrix{T}, basis_vecs::AbstractMatrix{T}) where {T<:AbstractFloat}

UnitCell(lattice_vecs::AbstractVector{Vector{T}}, basis_vecs::AbstractVector{Vector{T}}) where {T<:AbstractFloat}

UnitCell(; lattice_vecs, basis_vecs)

Returns an instance of the type UnitCell.

source
Base.:==Method
Base.:(==)(b1::Bond{D1}, b2::Bond{D2}) where {D1, D2}

Tests if two bonds b1 and b2 are equivalent.

source
Base.ndimsMethod
Base.ndims(unit_cell::UnitCell{D}) where {D}

Base.ndims(lattice::Lattice{D}) where {D}

Base.ndims(bond::Bond{D}) where {D}

Return the spatial dimensions of a UnitCell, Lattice or Bond.

source
Base.showMethod
Base.show(io::IO, bond::Bond{D}) where {D}

Base.show(io::IO, ::MIME"text/plain", bond::Bond{D}) where {D}

Show lattice.

source
Base.showMethod
Base.show(io::IO, lattice::Lattice{D}) where {D}

Base.show(io::IO, ::MIME"text/plain", lattice::Lattice{D}) where {D}

Show lattice.

source
Base.showMethod
Base.show(io::IO, uc::UnitCell{D,T}) where {D,T}

Base.show(io::IO, ::MIME"text/plain", uc::UnitCell{D,T}) where {D,T}

Show unit cell.

source
LatticeUtilities.bond_to_vec!Method
bond_to_vec!(Δr::AbstractVector{T}, bond::Bond{D}, unit_cell::UnitCell{D,T}) where {D,T}

Calculate the displacement vector associated with a bond.

source
LatticeUtilities.bond_to_vecMethod
bond_to_vec(bond::Bond{D}, unit_cell::UnitCell{D,T}) where {D,T}

Return the displacement vector associated with a bond as SVector{D,T}.

source
LatticeUtilities.calc_k_point!Method
calc_k_point!(k_point::AbstractVector{T}, k_loc,
              unit_cell::UnitCell{D,T}, lattice::Lattice{D}) where {D,T}

Calculate the k-point k_point corresponding to the k-point location k_loc where k_loc is a vector of tuple of integers of length D.

source
LatticeUtilities.calc_k_pointMethod
calc_k_point(k_loc, unit_cell::UnitCell{D,T}, lattice::Lattice{D}) where {D,T}

Return the k-point corresponding to the k-point location k_loc.

source
LatticeUtilities.calc_k_points!Method
calc_k_points!(k_points::AbstractArray{T}, unit_cell::UnitCell{D,T}, lattice::Lattice{D}) where {D,T}

Calculate the k-point grid k_points assicated with a finite lattice.

source
LatticeUtilities.calc_k_pointsMethod
calc_k_points(unit_cell::UnitCell{D,T}, lattice::Lattice{D}) where {D,T}

Return the k-points associated with a finite lattice as a vector of static vectors, Vector{SVector{D,T}}. If the system has open boundary conditions in a given direction, it will treat the linear extent of the system in that direction as equalling L=1 for the purposes of calculating the k-points.

source
LatticeUtilities.displacement_to_vec!Method
displacement_to_vec!(Δr::AbstractVector{T}, Δl, o_init::Int, o_final::Int, unit_cell::UnitCell{D,T}) where {D,T}

Computes the position space displacement vector Δr corresponding to a displacement definition given by initial and final orbitals o₁ and o₂ in the unit cell respectively, along with a displacement in unit cells Δl.

Arguments

  • Δr::AbstractVector{T}: displacement vector in position space.
  • Δl: displacement in unit cells.
  • o_init::Int: initial orbital in unit cell.
  • o_final::Int: final orbital in unit cell.
  • unit_cell::UnitCell{D,T}: unit cell.
source
LatticeUtilities.displacement_to_vecMethod
displacement_to_vec(Δl, o_init::Int, o_final::Int, unit_cell::UnitCell{D,T})::SVector{D,T} where {D,T}

Returns the position space displacement vector Δr corresponding to a displacement definition given by initial and final orbitals o_init and o_final in the unit cell respectively, along with a displacement in unit cells Δl.

source
LatticeUtilities.loc_to_pos!Method
loc_to_pos!(r::AbstractVector{T}, l, o::Int, unit_cell::UnitCell{D,T}) where {D,T}

Calculate the position r of an orbital o at location l.

source
LatticeUtilities.loc_to_pos!Method
loc_to_pos!(r::AbstractVector{T}, l, unit_cell::UnitCell{D,T}) where {D,T}

Calculate the position r of a unit cell at location l.

source
LatticeUtilities.loc_to_posMethod
loc_to_pos(l, s::Int, unit_cell::UnitCell{D,T}) where {D,T}

Return the position r of a orbital o at location l as a vector or type SVector{D,T}.

source
LatticeUtilities.loc_to_siteMethod
loc_to_site(l, o::Int, unit_cell::UnitCell{D}, lattice::Lattice{D}) where {D}

Given a unit cell location l and orbital species o, return the corresponding site s in the lattice. If the location is not valid owing to open boundary conditions then return s = 0.

source
LatticeUtilities.loc_to_siteMethod
loc_to_site(u::Int, o::Int, unit_cell::UnitCell{D}) where {D}

Given a unit cell index u and orbital o, return the correspond site s.

source
LatticeUtilities.map_neighbor_tableMethod
map_neighbor_table(neighbor_table::Matrix{Int})

For a given neighbor table, return a dictionary that reports the bonds and neighbors associated with each site in the lattice. If neighbor_table is modified, then a new map must be constructed.

source
LatticeUtilities.nsitesMethod
nsites(unit_cell::UnitCell{D}, lattice::Lattice{D}) where {D}

nsites(; unit_cell::UnitCell{D}, lattice::Lattice{D}) where {D}

Return the total number of sites/orbitals in a finite lattice.

source
LatticeUtilities.pbc!Method
pbc!(l::AbstractVector{Int}, lattice::Lattice{D}) where {D}

Apply periodic boundary to unit cell location l.

source
LatticeUtilities.simplify!Method
simplify!(Δl::AbstractVector{Int}, lattice::Lattice{D}) where {D}

Simplify displacement Δl so that it is as short as possible accounting for periodic boundary conditions where necessary.

source
LatticeUtilities.simplifyMethod
simplify(bond::Bond{D}, lattice::Lattice{D}) where {D}

Simplify a bond so that the displacement is the shortest possible accounting for periodic boundary conditions where necessary, returning the new bond.

source
LatticeUtilities.site_to_loc!Method
site_to_loc!(l::AbstractVector{Int}, s::Int, unit_cell::UnitCell{D}, lattice::Lattice{D}) where {D}

site_to_loc!(; l::AbstractVector{Int}, s::Int, unit_cell::UnitCell{D}, lattice::Lattice{D}) where {D}

For a given site s in the lattice, calculate the location l of the unit cell it is in and return the orbital species o of the site.

source
LatticeUtilities.site_to_locMethod
site_to_loc(s::Int, unit_cell::UnitCell{D,T}, lattice::Lattice{D}) where {D,T}

For a given site s in the lattice, return the location l of the unit cell it is in and the orbital species o.

source
LatticeUtilities.site_to_siteMethod
site_to_site(s::Int, Δl, o::Int, unit_cell::UnitCell, lattice::Lattice)

Given an initial site s, and a displacement in unit cells Δl and a terminating orbital species o, return the resulting site s′ in the lattice. If the displacement is not allowed as a result of open boundary conditions, then s′=0 is returned.

source
LatticeUtilities.sites_to_bondMethod
sites_to_bond(s::Int, s′::Int, unit_cell::UnitCell{D}, lattice::Lattice{D}) where {D}

Return the Bond associated with getting displaced from site s to s′.

source
LatticeUtilities.sites_to_displacement!Method
function sites_to_displacement!(Δl::AbstractVector{Int}, s::Int, s′::Int, unit_cell::UnitCell{D}, lattice::Lattice{D}) where {D}

When getting displaced from site s to s′, calculate the corresponding displacement in unit cells Δl.

source
LatticeUtilities.sites_to_displacementMethod
function sites_to_displacement(s::Int, s′::Int, unit_cell::UnitCell{D}, lattice::Lattice{D}) where {D}

When getting displaced from site s to s′, return the corresponding displacement in unit cells Δl::MVector{D,Int}.

source
LatticeUtilities.translational_avg!Method
function translational_avg!(fg::AbstractArray{Complex{T}}, f::AbstractArray{Complex{T}}, g::AbstractArray{Complex{T}};
                            restore::Bool=true) where {T<:AbstractFloat}

Let f[i] and g[j] be two distinct multi-dimensional arrays, where i and j represent an index into them and also correspond to the position of a unit cell in a periodic finite lattice This method then computes in-place the product (f⋅g)[i-j] that is averaged over translation symmetry. If restore = true then f and g are left unchanged, otherwise they will be left modified.

source
LatticeUtilities.unitcell_to_locMethod
unitcell_to_loc(u::Int, lattice::Lattice{D})::SVector{D,Int} where {D}

Return the location of unit cell u as an instance of type SVector{D,Int}.

source
LatticeUtilities.valid_siteMethod
valid_site(s::Int, unit_cell::UnitCell{D}, lattice::Lattice{D}) where {D}

valid_site(; s, unit_cell, lattice) = valid_site(s, unit_cell, lattice)

Return whether s is a valid site index.

source