Example 3: User Mutation
Usage:
$ julia --threads=auto user_mutation.jl
SmoQyDEAC uses multithreading for parallelizing runs. Multithreading it recommended. –threads=auto will run a thread for each core available, or 2x for hyperthreading cores
In this example we will show how to add an additional user-defined mutation to the DEAC base algorithm
# First we import all required packages
using SmoQyDEAC
using FileIO
using Statistics
using LoopVectorization
using Random
We now load the data provided in our source file. This is the same as example 1, but we are just loading the binned τ data.
loadfile = "greens.jld2";
input_dictionary = load(loadfile);
Gτ_bin = input_dictionary["Gτ"];
τs = collect(input_dictionary["τs"]);
β = τs[end];
Make an output folder for checkpoint file and output file
output_directory = "user_mutation_output/";
mkpath(output_directory);
Define necessary parameters for the DEAC run. Typically you will want at least 1,000 for numberofbins * runsperbin. For speed's sake we only do 2*5 in this example.
number_of_bins = 2;
runs_per_bin = 5 ;
output_file = joinpath(output_directory, "user_mutation_out.jld2");
checkpoint_file = joinpath(output_directory,"DEAC_checkpoint.jld2");
nω = 401;
ωmin = -10.;
ωmax = 10.;
ωs = collect(LinRange(ωmin,ωmax,nω));
Set optional parameters
base_seed = 1000000;
keep_bin_data = false;
Define an additional mutation function which takes two populations of [1:nω,1:n_population] size and a random number generator. Per Julia convention, the first argument is the one which is updated. For those new to Julia, the "!" at the end of the function name means the function will mutate at least one of the arguments. This mutation just puts a slight blur on odd indexed ω values. This is not something I imagine you'd want to do, but, this is a simple example
function user_mut!(pop_new,pop_old,rng)
npop = size(pop_old,2)
nω = size(pop_old,1)
for ω ∈ 1:nω
if (ω%2) == 1
pop_new[ω,:] = pop_old[ω,:] .+ 0.05 .* (0.5 .- rand(rng,Float64,npop))
else
pop_new[ω,:] = pop_old[ω,:]
end
end
return nothing
end
user_mut! (generic function with 1 method)
Vectorized version of the same function using the LoopVectorization.jl package.
function user_mut_vec!(pop_new,pop_old,rng)
rng_pop = rand(rng,Float64,(size(pop_new,1),size(pop_new,2)))
@turbo for pop ∈ axes(pop_new,2), ω ∈ axes(pop_new,1)
pop_new[ω,pop] = pop_old[ω,pop] + (0.05 * (ω%2) * (0.5 - rng_pop[ω,pop]))
end
return nothing
end
user_mut_vec! (generic function with 1 method)
Now we run DEAC with the additional mutation Note, numberofgenerations is set low for the example's run time
output_dictionary_τ = DEAC_Binned(
Gτ_bin,
β,
τs,
ωs,
"time_fermionic",
number_of_bins,
runs_per_bin,
output_file,
checkpoint_file;
base_seed = base_seed,
keep_bin_data = keep_bin_data,
user_mutation! = user_mut_vec!,
fitness = 1.0,
find_fitness_floor = false,
number_of_generations = 10000,
verbose = true
)
Dict{String, Any} with 9 entries:
"zeroth_moment" => 0.999124
"A" => [-0.212683; 0.0533077; … ; 0.0353569; -0.112127;;]
"zeroth_moment_σ" => NaN
"fitness" => [1.0]
"avg_generations" => 10000.0
"σ" => [0.0784212; 0.0271474; … ; 0.00337552; 0.01786;;]
"runtime" => 6.43827
"ωs" => [-10.0, -9.95, -9.9, -9.85, -9.8, -9.75, -9.7, -9.65, -…
"full_eigenvalues" => [-3.30872e-23, 3.47538e-11, 3.84e-11, 4.52247e-11, 5.69…
This page was generated using Literate.jl.