Developer API
StableLinearAlgebra.mul_P!
— Functionmul_P!(A, p, B)
Evaluate the matrix product $A = P \cdot B,$ where $P$ is a permutation matrix represented by the vector of integers p
.
mul_P!(A, B, p)
Evaluate the matrix product $A = B \cdot P,$ where $P$ is a permutation matrix represented by the vector of integers p
.
StableLinearAlgebra.inv_P!
— Functioninv_P!(p⁻¹, p)
Calculate the inverse/transpose $P^{-1}=P^T$ of a permuation $P$ represented by the vector p
, writing the result to p⁻¹
.
StableLinearAlgebra.perm_sign
— Functionperm_sign(p::AbstractVector{Int})
Calculate the sign/parity of the permutation p
, $\textrm{sgn}(p) = \pm 1.$
LAPACK LinearAlgebra
StableLinearAlgebra.QRWorkspace
— TypeQRWorkspace{T<:Number, E<:Real}
Allocated space for calcuating the pivoted QR factorization using the LAPACK routines geqp3!
and orgqr!
while avoiding dynamic memory allocations.
StableLinearAlgebra.LUWorkspace
— TypeLUWorkspace{T<:Number, E<:Real}
Allocated space for calcuating the pivoted QR factorization using the LAPACK routine getrf!
. Also interfaces with the getri!
and getrs!
routines for inverting matrices and solving linear systems respectively.
StableLinearAlgebra.inv_lu!
— Functioninv_lu!(A::AbstractMatrix{T}, ws::LUWorkspace{T}) where {T}
Calculate the inverse of the matrix A
, overwriting A
in-place. Also return $\log(|\det A^{-1}|)$ and $\textrm{sign}(\det A^{-1}).$
StableLinearAlgebra.ldiv_lu!
— Functionldiv_lu!(A::AbstractMatrix{T}, B::AbstractMatrix{T}, ws::LUWorkspace{T}) where {T}
Calculate $B:= A^{-1} B,$ modifying $B$ in-place. The matrix $A$ is over-written as well. Also return $\log(|\det A^{-1}|)$ and $\textrm{sign}(\det A^{-1}).$
StableLinearAlgebra.det_lu!
— Functiondet_lu!(A::AbstractMatrix{T}, ws::LUWorkspace{T}) where {T}
Return $\log(|\det A|)$ and $\textrm{sign}(\det A).$ Note that $A$ is left modified by this function.